Artificial General Intelligence
Artificial general intelligence (AGI) is a type of expert system (AI) that matches or exceeds human cognitive abilities across a large range of cognitive tasks. This contrasts with narrow AI, which is restricted to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that significantly surpasses human cognitive capabilities. AGI is considered among the meanings of strong AI.
Creating AGI is a main objective of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 survey determined 72 active AGI research and development projects across 37 nations. [4]
The timeline for accomplishing AGI stays a topic of ongoing argument amongst scientists and specialists. As of 2023, some argue that it may be possible in years or years; others preserve it may take a century or longer; a minority think it might never be achieved; and another minority claims that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has revealed concerns about the quick development towards AGI, recommending it might be attained quicker than numerous expect. [7]
There is argument on the specific meaning of AGI and regarding whether modern large language designs (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common topic in sci-fi and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many experts on AI have mentioned that alleviating the danger of human termination positioned by AGI ought to be an international priority. [14] [15] Others find the development of AGI to be too remote to provide such a risk. [16] [17]
Terminology
AGI is likewise called strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level smart AI, or general intelligent action. [21]
Some academic sources reserve the term "strong AI" for computer programs that experience life or consciousness. [a] In contrast, weak AI (or narrow AI) has the ability to fix one particular issue but lacks basic cognitive capabilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the same sense as people. [a]
Related concepts consist of artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical kind of AGI that is a lot more typically smart than humans, [23] while the concept of transformative AI connects to AI having a big influence on society, for example, similar to the agricultural or industrial transformation. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify five levels of AGI: emerging, skilled, specialist, virtuoso, and superhuman. For example, a proficient AGI is defined as an AI that outshines 50% of proficient adults in a wide variety of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly specified but with a threshold of 100%. They consider large language designs like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have actually been proposed. Among the leading propositions is the Turing test. However, there are other widely known meanings, and some researchers disagree with the more popular techniques. [b]
Intelligence traits
Researchers normally hold that intelligence is required to do all of the following: [27]
reason, use method, solve puzzles, and make judgments under unpredictability
represent knowledge, including good sense understanding
plan
discover
- communicate in natural language
- if needed, integrate these abilities in conclusion of any offered goal
Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and choice making) think about extra traits such as imagination (the capability to form unique mental images and principles) [28] and autonomy. [29]
Computer-based systems that display a lot of these abilities exist (e.g. see computational imagination, automated reasoning, decision assistance system, robot, evolutionary computation, smart agent). There is debate about whether modern-day AI systems possess them to an appropriate degree.
Physical qualities
Other capabilities are considered preferable in intelligent systems, as they might affect intelligence or help in its expression. These include: [30]
- the capability to sense (e.g. see, hear, and so on), and - the capability to act (e.g. move and manipulate objects, modification place to explore, and so on).
This includes the ability to identify and react to risk. [31]
Although the capability to sense (e.g. see, hear, etc) and the ability to act (e.g. relocation and manipulate items, modification area to check out, and so on) can be desirable for some intelligent systems, [30] these physical capabilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that large language models (LLMs) might already be or become AGI. Even from a less positive point of view on LLMs, there is no firm requirement for an AGI to have a human-like type; being a silicon-based computational system suffices, offered it can process input (language) from the external world in location of human senses. This analysis lines up with the understanding that AGI has actually never been proscribed a specific physical personification and therefore does not require a capability for locomotion or traditional "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to confirm human-level AGI have been considered, including: [33] [34]
The idea of the test is that the machine needs to attempt and pretend to be a guy, by responding to concerns put to it, and it will just pass if the pretence is reasonably persuading. A substantial part of a jury, who must not be expert about makers, must be taken in by the pretence. [37]
AI-complete problems
A problem is informally called "AI-complete" or "AI-hard" if it is believed that in order to resolve it, one would need to implement AGI, due to the fact that the solution is beyond the capabilities of a purpose-specific algorithm. [47]
There are lots of issues that have actually been conjectured to need general intelligence to fix as well as people. Examples include computer vision, natural language understanding, and handling unanticipated circumstances while fixing any real-world problem. [48] Even a particular job like requires a device to check out and compose in both languages, follow the author's argument (factor), comprehend the context (understanding), and faithfully replicate the author's initial intent (social intelligence). All of these issues need to be fixed concurrently in order to reach human-level machine performance.
However, numerous of these jobs can now be performed by modern-day big language designs. According to Stanford University's 2024 AI index, AI has reached human-level efficiency on numerous standards for checking out understanding and visual reasoning. [49]
History
Classical AI
Modern AI research study began in the mid-1950s. [50] The first generation of AI scientists were convinced that synthetic basic intelligence was possible and that it would exist in simply a couple of decades. [51] AI leader Herbert A. Simon wrote in 1965: "machines will be capable, within twenty years, of doing any work a man can do." [52]
Their predictions were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers believed they might develop by the year 2001. AI leader Marvin Minsky was a specialist [53] on the task of making HAL 9000 as sensible as possible according to the agreement forecasts of the time. He said in 1967, "Within a generation ... the problem of creating 'artificial intelligence' will significantly be resolved". [54]
Several classical AI projects, such as Doug Lenat's Cyc task (that began in 1984), and Allen Newell's Soar job, were directed at AGI.
However, in the early 1970s, it ended up being apparent that scientists had actually grossly undervalued the trouble of the job. Funding companies became doubtful of AGI and put scientists under increasing pressure to produce beneficial "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "continue a table talk". [58] In reaction to this and the success of expert systems, both industry and government pumped cash into the field. [56] [59] However, self-confidence in AI spectacularly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never ever fulfilled. [60] For the 2nd time in twenty years, AI scientists who anticipated the impending accomplishment of AGI had actually been mistaken. By the 1990s, AI researchers had a credibility for making vain pledges. They became hesitant to make forecasts at all [d] and prevented reference of "human level" synthetic intelligence for worry of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI achieved industrial success and scholastic respectability by focusing on specific sub-problems where AI can produce proven outcomes and industrial applications, such as speech acknowledgment and recommendation algorithms. [63] These "applied AI" systems are now utilized extensively throughout the innovation industry, and research in this vein is heavily funded in both academia and industry. Since 2018 [update], development in this field was considered an emerging trend, and a mature stage was anticipated to be reached in more than 10 years. [64]
At the millenium, lots of traditional AI scientists [65] hoped that strong AI might be established by combining programs that solve different sub-problems. Hans Moravec wrote in 1988:
I am confident that this bottom-up route to artificial intelligence will one day satisfy the standard top-down route majority way, all set to supply the real-world skills and the commonsense knowledge that has actually been so frustratingly elusive in thinking programs. Fully intelligent makers will result when the metaphorical golden spike is driven unifying the 2 efforts. [65]
However, even at the time, this was disputed. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by specifying:
The expectation has actually frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches someplace in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is really only one feasible route from sense to symbols: from the ground up. A free-floating symbolic level like the software level of a computer will never be reached by this path (or vice versa) - nor is it clear why we ought to even attempt to reach such a level, considering that it looks as if getting there would simply total up to uprooting our symbols from their intrinsic significances (therefore merely decreasing ourselves to the practical equivalent of a programmable computer system). [66]
Modern artificial basic intelligence research study
The term "synthetic general intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the implications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the capability to satisfy goals in a large range of environments". [68] This kind of AGI, identified by the capability to increase a mathematical meaning of intelligence rather than show human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The first summer season school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and featuring a number of visitor speakers.
As of 2023 [update], a little number of computer researchers are active in AGI research study, and numerous add to a series of AGI conferences. However, significantly more researchers have an interest in open-ended knowing, [76] [77] which is the concept of allowing AI to constantly discover and innovate like humans do.
Feasibility
Since 2023, the advancement and possible accomplishment of AGI stays a subject of extreme argument within the AI community. While traditional agreement held that AGI was a distant objective, current advancements have led some researchers and industry figures to declare that early forms of AGI may already exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "devices will be capable, within twenty years, of doing any work a guy can do". This prediction stopped working to come real. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century due to the fact that it would need "unforeseeable and basically unforeseeable developments" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between modern computing and human-level artificial intelligence is as large as the gulf in between present area flight and practical faster-than-light spaceflight. [80]
An additional obstacle is the lack of clarity in specifying what intelligence involves. Does it require consciousness? Must it display the capability to set goals along with pursue them? Is it purely a matter of scale such that if design sizes increase sufficiently, intelligence will emerge? Are centers such as planning, reasoning, and causal understanding needed? Does intelligence need explicitly replicating the brain and its specific professors? Does it require feelings? [81]
Most AI researchers believe strong AI can be accomplished in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of attaining strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be accomplished, but that the present level of progress is such that a date can not accurately be predicted. [84] AI specialists' views on the feasibility of AGI wax and wane. Four polls carried out in 2012 and 2013 recommended that the mean quote amongst experts for when they would be 50% confident AGI would arrive was 2040 to 2050, depending on the survey, with the mean being 2081. Of the professionals, 16.5% addressed with "never" when asked the same concern however with a 90% self-confidence instead. [85] [86] Further current AGI progress factors to consider can be discovered above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year timespan there is a strong bias towards predicting the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They analyzed 95 forecasts made in between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft scientists published a detailed assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it could reasonably be considered as an early (yet still incomplete) variation of a synthetic general intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outperforms 99% of people on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a substantial level of general intelligence has actually currently been attained with frontier designs. They composed that hesitation to this view originates from 4 main reasons: a "healthy uncertainty about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "devotion to human (or biological) exceptionalism", or a "concern about the economic implications of AGI". [91]
2023 likewise marked the introduction of big multimodal models (large language designs capable of processing or producing numerous techniques such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the first of a series of models that "invest more time believing before they react". According to Mira Murati, this ability to believe before responding represents a brand-new, additional paradigm. It improves design outputs by spending more computing power when generating the response, whereas the model scaling paradigm enhances outputs by increasing the design size, training data and training compute power. [93] [94]
An OpenAI staff member, Vahid Kazemi, claimed in 2024 that the business had achieved AGI, specifying, "In my viewpoint, we have currently accomplished AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "better than many human beings at most jobs." He likewise attended to criticisms that large language models (LLMs) merely follow predefined patterns, comparing their knowing procedure to the scientific approach of observing, hypothesizing, and confirming. These statements have triggered debate, as they depend on a broad and non-traditional meaning of AGI-traditionally understood as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs demonstrate amazing flexibility, they may not totally fulfill this standard. Notably, Kazemi's remarks came soon after OpenAI got rid of "AGI" from the regards to its collaboration with Microsoft, triggering speculation about the business's tactical intentions. [95]
Timescales
Progress in synthetic intelligence has actually traditionally gone through periods of rapid progress separated by periods when development appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software application or both to develop space for additional progress. [82] [98] [99] For instance, the computer hardware offered in the twentieth century was not adequate to execute deep learning, which requires great deals of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel says that price quotes of the time required before a genuinely flexible AGI is developed differ from 10 years to over a century. As of 2007 [update], the agreement in the AGI research neighborhood seemed to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI scientists have actually provided a wide variety of opinions on whether development will be this fast. A 2012 meta-analysis of 95 such viewpoints found a bias towards anticipating that the beginning of AGI would happen within 16-26 years for contemporary and historic predictions alike. That paper has been criticized for how it classified viewpoints as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, substantially better than the second-best entry's rate of 26.3% (the conventional approach utilized a weighted sum of scores from different pre-defined classifiers). [105] AlexNet was concerned as the initial ground-breaker of the present deep learning wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on openly offered and easily available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds around to a six-year-old child in very first grade. A grownup pertains to about 100 typically. Similar tests were performed in 2014, with the IQ rating reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language design capable of carrying out lots of diverse tasks without specific training. According to Gary Grossman in a VentureBeat short article, while there is consensus that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be classified as a narrow AI system. [108]
In the very same year, Jason Rohrer used his GPT-3 account to establish a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested for modifications to the chatbot to abide by their security guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of carrying out more than 600 various jobs. [110]
In 2023, Microsoft Research published a research study on an early version of OpenAI's GPT-4, competing that it exhibited more basic intelligence than previous AI models and demonstrated human-level efficiency in jobs spanning several domains, such as mathematics, coding, and law. This research study sparked an argument on whether GPT-4 might be considered an early, incomplete variation of artificial general intelligence, stressing the requirement for more expedition and evaluation of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton specified that: [112]
The idea that this stuff might really get smarter than individuals - a few people believed that, [...] But many people believed it was method off. And I believed it was method off. I believed it was 30 to 50 years or perhaps longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis similarly stated that "The development in the last couple of years has actually been quite amazing", and that he sees no reason that it would slow down, expecting AGI within a years and even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within 5 years, AI would can passing any test a minimum of in addition to humans. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI worker, estimated AGI by 2027 to be "strikingly possible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is considered the most promising path to AGI, [116] [117] entire brain emulation can serve as an alternative approach. With whole brain simulation, a brain design is built by scanning and mapping a biological brain in detail, and after that copying and replicating it on a computer system or another computational gadget. The simulation design need to be adequately faithful to the original, so that it acts in practically the exact same method as the original brain. [118] Whole brain emulation is a type of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research study purposes. It has been gone over in artificial intelligence research study [103] as a method to strong AI. Neuroimaging technologies that might deliver the essential detailed understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of sufficient quality will become available on a comparable timescale to the computing power required to replicate it.
Early estimates
For low-level brain simulation, an extremely powerful cluster of computers or GPUs would be needed, provided the massive quantity of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on typical 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by adulthood. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based upon a simple switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at numerous price quotes for the hardware required to equal the human brain and embraced a figure of 1016 calculations per 2nd (cps). [e] (For comparison, if a "computation" was equivalent to one "floating-point operation" - a procedure used to rate present supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, attained in 2011, while 1018 was accomplished in 2022.) He utilized this figure to predict the needed hardware would be offered sometime in between 2015 and 2025, if the exponential development in computer power at the time of writing continued.
Current research
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has actually developed a particularly in-depth and openly accessible atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based approaches
The synthetic neuron design presumed by Kurzweil and used in many present synthetic neural network applications is basic compared with biological neurons. A brain simulation would likely have to capture the comprehensive cellular behaviour of biological neurons, presently comprehended only in broad outline. The overhead presented by full modeling of the biological, chemical, and physical details of neural behaviour (especially on a molecular scale) would need computational powers several orders of magnitude larger than Kurzweil's quote. In addition, the price quotes do not represent glial cells, which are known to play a function in cognitive procedures. [125]
A fundamental criticism of the simulated brain technique derives from embodied cognition theory which asserts that human embodiment is an essential element of human intelligence and is needed to ground meaning. [126] [127] If this theory is right, any fully functional brain design will need to encompass more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as a choice, however it is unidentified whether this would be enough.
Philosophical point of view
"Strong AI" as defined in philosophy
In 1980, theorist John Searle created the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference in between two hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness". Weak AI hypothesis: An expert system system can (just) act like it believes and has a mind and awareness.
The first one he called "strong" since it makes a more powerful statement: it presumes something special has happened to the machine that surpasses those abilities that we can test. The behaviour of a "weak AI" maker would be exactly similar to a "strong AI" maker, however the latter would also have subjective conscious experience. This use is likewise common in scholastic AI research and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to mean "human level artificial basic intelligence". [102] This is not the same as Searle's strong AI, unless it is presumed that awareness is necessary for human-level AGI. Academic theorists such as Searle do not think that holds true, and to most artificial intelligence scientists the question is out-of-scope. [130]
Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no need to know if it actually has mind - certainly, there would be no other way to inform. For AI research study, Searle's "weak AI hypothesis" is comparable to the declaration "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for granted, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are two various things.
Consciousness
Consciousness can have different meanings, and some elements play significant roles in sci-fi and the ethics of artificial intelligence:
Sentience (or "remarkable awareness"): The ability to "feel" understandings or feelings subjectively, as opposed to the capability to factor about perceptions. Some thinkers, such as David Chalmers, utilize the term "consciousness" to refer specifically to sensational awareness, which is roughly comparable to life. [132] Determining why and how subjective experience arises is referred to as the hard issue of consciousness. [133] Thomas Nagel described in 1974 that it "seems like" something to be mindful. If we are not conscious, then it doesn't seem like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are not likely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer claimed that the business's AI chatbot, LaMDA, had actually accomplished sentience, though this claim was extensively disputed by other specialists. [135]
Self-awareness: To have mindful awareness of oneself as a different person, especially to be knowingly knowledgeable about one's own ideas. This is opposed to simply being the "subject of one's thought"-an os or debugger is able to be "familiar with itself" (that is, to represent itself in the exact same method it represents everything else)-but this is not what people normally imply when they utilize the term "self-awareness". [g]
These characteristics have a moral measurement. AI life would give rise to concerns of welfare and legal defense, similarly to animals. [136] Other aspects of consciousness related to cognitive capabilities are also relevant to the concept of AI rights. [137] Figuring out how to integrate sophisticated AI with existing legal and social structures is an emergent concern. [138]
Benefits
AGI could have a large range of applications. If oriented towards such goals, AGI might help mitigate different issues on the planet such as hunger, hardship and illness. [139]
AGI might improve efficiency and effectiveness in most jobs. For example, in public health, AGI could accelerate medical research, notably versus cancer. [140] It might look after the senior, [141] and equalize access to quick, top quality medical diagnostics. It might use enjoyable, low-cost and individualized education. [141] The requirement to work to subsist might become obsolete if the wealth produced is correctly rearranged. [141] [142] This likewise raises the question of the location of people in a significantly automated society.
AGI could also help to make rational choices, and to prepare for and avoid disasters. It might likewise help to gain the advantages of potentially catastrophic innovations such as nanotechnology or environment engineering, while preventing the associated dangers. [143] If an AGI's primary objective is to prevent existential disasters such as human termination (which might be challenging if the Vulnerable World Hypothesis turns out to be true), [144] it could take procedures to considerably decrease the risks [143] while decreasing the effect of these steps on our quality of life.
Risks
Existential risks
AGI may represent several types of existential threat, which are threats that threaten "the early extinction of Earth-originating intelligent life or the permanent and drastic destruction of its potential for desirable future advancement". [145] The threat of human termination from AGI has actually been the subject of many arguments, but there is likewise the possibility that the advancement of AGI would lead to a permanently flawed future. Notably, it could be utilized to spread and maintain the set of worths of whoever establishes it. If humankind still has moral blind spots comparable to slavery in the past, AGI might irreversibly entrench it, avoiding ethical progress. [146] Furthermore, AGI could facilitate mass monitoring and brainwashing, which might be used to produce a steady repressive worldwide totalitarian regime. [147] [148] There is likewise a threat for the makers themselves. If devices that are sentient or otherwise deserving of ethical factor to consider are mass produced in the future, participating in a civilizational course that forever neglects their well-being and interests could be an existential catastrophe. [149] [150] Considering how much AGI might enhance mankind's future and aid minimize other existential threats, Toby Ord calls these existential dangers "an argument for proceeding with due caution", not for "deserting AI". [147]
Risk of loss of control and human termination
The thesis that AI positions an existential danger for human beings, and that this threat requires more attention, is questionable but has been endorsed in 2023 by many public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed prevalent indifference:
So, dealing with possible futures of enormous advantages and risks, the experts are surely doing whatever possible to guarantee the very best outcome, right? Wrong. If a remarkable alien civilisation sent us a message saying, 'We'll arrive in a couple of decades,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The possible fate of humanity has sometimes been compared to the fate of gorillas threatened by human activities. The comparison specifies that greater intelligence allowed humankind to dominate gorillas, which are now susceptible in ways that they might not have actually expected. As an outcome, the gorilla has ended up being an endangered types, not out of malice, but just as a civilian casualties from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to control humankind which we must beware not to anthropomorphize them and interpret their intents as we would for humans. He said that individuals won't be "clever adequate to design super-intelligent makers, yet unbelievably dumb to the point of giving it moronic goals with no safeguards". [155] On the other side, the idea of instrumental merging recommends that almost whatever their objectives, intelligent agents will have reasons to try to make it through and acquire more power as intermediary steps to achieving these goals. And that this does not need having feelings. [156]
Many scholars who are concerned about existential threat supporter for more research study into resolving the "control problem" to address the concern: what kinds of safeguards, algorithms, or architectures can developers execute to maximise the likelihood that their recursively-improving AI would continue to behave in a friendly, rather than devastating, way after it reaches superintelligence? [157] [158] Solving the control issue is complicated by the AI arms race (which might lead to a race to the bottom of security preventative measures in order to release products before rivals), [159] and making use of AI in weapon systems. [160]
The thesis that AI can posture existential threat also has detractors. Skeptics generally say that AGI is not likely in the short-term, or that issues about AGI distract from other concerns associated with current AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for many individuals outside of the technology industry, existing chatbots and LLMs are already viewed as though they were AGI, resulting in additional misunderstanding and worry. [162]
Skeptics often charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence changing an unreasonable belief in an omnipotent God. [163] Some researchers think that the interaction campaigns on AI existential threat by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulatory capture and to inflate interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other industry leaders and scientists, issued a joint statement asserting that "Mitigating the danger of termination from AI ought to be a worldwide priority alongside other societal-scale dangers such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI estimated that "80% of the U.S. labor force might have at least 10% of their work jobs impacted by the introduction of LLMs, while around 19% of employees might see a minimum of 50% of their tasks affected". [166] [167] They consider workplace employees to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI might have a much better autonomy, ability to make decisions, to user interface with other computer system tools, but likewise to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the quality of life will depend on how the wealth will be rearranged: [142]
Everyone can take pleasure in a life of luxurious leisure if the machine-produced wealth is shared, or many people can wind up miserably bad if the machine-owners successfully lobby against wealth redistribution. Up until now, the pattern appears to be towards the second option, with innovation driving ever-increasing inequality
Elon Musk considers that the automation of society will need governments to embrace a universal fundamental earnings. [168]
See likewise
Artificial brain - Software and hardware with cognitive abilities comparable to those of the animal or human brain AI impact AI security - Research area on making AI safe and helpful AI positioning - AI conformance to the designated goal A.I. Rising - 2018 movie directed by Lazar Bodroža Artificial intelligence Automated artificial intelligence - Process of automating the application of artificial intelligence BRAIN Initiative - Collaborative public-private research initiative revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General video game playing - Ability of expert system to play various games Generative synthetic intelligence - AI system efficient in creating material in action to prompts Human Brain Project - Scientific research study job Intelligence amplification - Use of infotech to augment human intelligence (IA). Machine ethics - Moral behaviours of man-made devices. Moravec's paradox. Multi-task learning - Solving several machine learning tasks at the very same time. Neural scaling law - Statistical law in artificial intelligence. Outline of synthetic intelligence - Overview of and topical guide to artificial intelligence. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or form of synthetic intelligence. Transfer knowing - Machine knowing method. Loebner Prize - Annual AI competitors. Hardware for synthetic intelligence - Hardware specially developed and enhanced for expert system. Weak expert system - Form of expert system.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the post Chinese room. ^ AI founder John McCarthy composes: "we can not yet identify in basic what sort of computational treatments we wish to call smart. " [26] (For a discussion of some definitions of intelligence used by expert system scientists, see approach of artificial intelligence.). ^ The Lighthill report particularly slammed AI's "grandiose objectives" and led the taking apart of AI research study in England. [55] In the U.S., DARPA became figured out to fund just "mission-oriented direct research study, rather than standard undirected research". [56] [57] ^ As AI creator John McCarthy composes "it would be a great relief to the rest of the workers in AI if the creators of new basic formalisms would express their hopes in a more safeguarded kind than has in some cases held true." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As defined in a basic AI textbook: "The assertion that machines might potentially act wisely (or, possibly better, act as if they were smart) is called the 'weak AI' hypothesis by philosophers, and the assertion that makers that do so are in fact thinking (instead of replicating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to carry out a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to guarantee that synthetic basic intelligence benefits all of mankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is producing artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were recognized as being active in 2020. ^ a b c "AI timelines: What do professionals in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, wiki.vst.hs-furtwangen.de Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton quits Google and cautions of risk ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can avoid the bad actors from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals stimulates of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The genuine risk is not AI itself but the way we release it. ^ "Impressed by expert system? Experts say AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might present existential threats to humankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last creation that humanity needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the danger of termination from AI should be a worldwide top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals warn of risk of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from producing machines that can outthink us in basic ways. ^ LeCun, Yann (June 2023). "AGI does not provide an existential threat". Medium. There is no reason to fear AI as an existential risk. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil describes strong AI as "device intelligence with the complete series of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is transforming our world - it is on all of us to ensure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent qualities is based upon the subjects covered by significant AI books, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we believe: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reconsidered: The principle of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reconsidered: The idea of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine kid - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists challenge whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar test to AP Biology. Here's a list of tough exams both AI versions have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer researchers and software engineers avoided the term synthetic intelligence for fear of being viewed as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of machine intelligence: Despite progress in maker intelligence, users.atw.hu artificial basic intelligence is still a significant obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not become a Frankenstein's monster". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic artificial intelligence will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us paradise or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future development in expert system: A survey of professional viewpoint. In Fundamental problems of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational function of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as clever as Siri - however a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're going into the AI twilight zone in between narrow and general AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are already seeing an early example of an AGI system in the recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is debatable, however the consensus is that it is not AGI. ... If absolutely nothing else, GPT-3 informs us there is a happy medium in between narrow and basic AI. ^ Quach, Katyanna. "A designer built an AI chatbot utilizing GPT-3 that helped a man speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can carry out over 600 tasks, from playing games to controlling robotics", TechCrunch, archived from the initial on 16 June 2022, obtained 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could rival human intelligence in 'just a few years,' states CEO of Google's main A.I. research study lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody seems to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research task maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A wide variety of views in existing research study, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How publishing our minds to a computer system may end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (quoted in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (estimated in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for interest by the field about why a program behaves the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the business's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost exceed advantages?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Benefit from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, dangers, methods (Reprinted with corrections 2017 ed.). Oxford, UK; New York, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that humans will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security danger' to Australia, Senate questions says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the implications of expert system - however are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook argument between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The fascinating Facebook argument between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI danger: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report alerts". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over danger posed but expert system can not be ignored". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring worries over AI, alert scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder says huge tech is lying about AI termination danger". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early appearance at the labor market impact potential of big language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of employees could see their tasks impacted by AI. These are the jobs most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we need universal standard income because 'in the future, manual labor will be an option'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic general intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, recovered 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Viewpoint, archived from the initial on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The ultimate effort is to make computer programs that can solve problems and achieve goals in the world as well as human beings. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: forum.batman.gainedge.org Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, obtained 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York: Oxford University Press, archived from the original on 25 July 2009, recovered 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, retrieved 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, recovered 4 September 2013 - via ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, retrieved 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what might be called "Dyson's Law") that "Any system basic enough to be understandable will not be complicated enough to act smartly, while any system complicated enough to behave intelligently will be too made complex to understand." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead simple stupid. They work, but they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from devices. For biological animals, reason and purpose originate from acting in the world and experiencing the effects. Expert systems - disembodied, complete strangers to blood, sweat, and tears - have no celebration for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically expect that those who hope to get rich from AI are going to have the interests of the rest of us close at heart,' ... composes [Gary Marcus] 'We can't depend on federal governments driven by campaign finance contributions [from tech companies] to press back.' ... Marcus details the demands that residents need to make of their federal governments and the tech business. They include transparency on how AI systems work; payment for people if their information [are] used to train LLMs (large language model) s and the right to grant this usage; and the ability to hold tech companies responsible for the damages they bring on by getting rid of Section 230, imposing cash penalites, and passing more stringent item liability laws ... Marcus likewise suggests ... that a new, AI-specific federal company, similar to the FDA, the FCC, or the FTC, might provide the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... recommends ... develop [ing] a professional licensing program for engineers that would work in a comparable method to medical licenses, malpractice fits, and the Hippocratic oath in medicine. 'What if, like physicians,' she asks ..., 'AI engineers also pledged to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has stumped people for years, reveals the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competitors has revealed that although NLP (natural-language processing) models are capable of incredible accomplishments, their abilities are really much restricted by the quantity of context they get. This [...] could cause [difficulties] for scientists who want to use them to do things such as analyze ancient languages. Sometimes, there are few historic records on long-gone civilizations to work as training data for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to produce fake videos identical from genuine ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean realistic videos produced using expert system that actually deceive people, then they barely exist. The fakes aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in general, operating in our media as counterfeited proof. Their function much better resembles that of animations, especially smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We must avoid humanizing machine-learning designs used in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a device a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of synthetic basic intelligence are stymmied by the usual issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, recovered 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, presented and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead police to overlook inconsistent evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but showed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at jobs that require genuine humanlike thinking or an understanding of the physical and social world ... ChatGPT seemed not able to reason logically and attempted to count on its large database of ... facts stemmed from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are powerful but undependable. Rules-based systems can not handle situations their developers did not prepare for. Learning systems are restricted by the data on which they were trained. AI failures have actually currently resulted in disaster. Advanced autopilot features in automobiles, although they carry out well in some circumstances, have driven cars and trucks without warning into trucks, concrete barriers, and parked cars. In the incorrect scenario, AI systems go from supersmart to superdumb in an instant. When an opponent is trying to control and hack an AI system, the dangers are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by brand-new innovations however rely on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.