Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
  • Sign in / Register
S
sportpassionhub
  • Project overview
    • Project overview
    • Details
    • Activity
  • Issues 31
    • Issues 31
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Environments
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Container Registry
  • Analytics
    • Analytics
    • CI / CD
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Barbara Rainey
  • sportpassionhub
  • Issues
  • #30

Closed
Open
Opened Apr 11, 2025 by Barbara Rainey@barbararaineyMaintainer
  • Report abuse
  • New issue
Report abuse New issue

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library designed to assist in the advancement of reinforcement knowing algorithms. It aimed to standardize how environments are specified in AI research, making published research more easily reproducible [24] [144] while providing users with an easy interface for communicating with these environments. In 2022, brand-new developments of Gym have been transferred to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for reinforcement knowing (RL) research study on computer game [147] utilizing RL algorithms and research study generalization. Prior RL research focused mainly on optimizing representatives to solve single jobs. Gym Retro offers the ability to generalize between games with comparable ideas but various appearances.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robotic representatives at first lack knowledge of how to even stroll, but are given the goals of learning to move and to press the opposing agent out of the ring. [148] Through this adversarial learning process, bytes-the-dust.com the agents learn how to adjust to changing conditions. When a representative is then removed from this virtual environment and placed in a brand-new virtual environment with high winds, the representative braces to remain upright, suggesting it had learned how to balance in a generalized way. [148] [149] OpenAI's Igor Mordatch argued that competition between representatives might develop an intelligence "arms race" that might increase a representative's ability to work even outside the context of the competition. [148]
OpenAI 5

OpenAI Five is a team of 5 OpenAI-curated bots utilized in the competitive five-on-five video game Dota 2, that discover to play against human gamers at a high skill level entirely through trial-and-error algorithms. Before ending up being a group of 5, the very first public demonstration occurred at The International 2017, the annual premiere champion tournament for the video game, where Dendi, a professional Ukrainian gamer, lost against a bot in a live individually match. [150] [151] After the match, CTO Greg Brockman explained that the bot had actually learned by playing against itself for two weeks of real time, and that the knowing software was an action in the instructions of producing software application that can handle intricate jobs like a surgeon. [152] [153] The system uses a kind of support knowing, as the bots discover in time by playing against themselves numerous times a day for months, and are rewarded for actions such as killing an opponent and taking map goals. [154] [155] [156]
By June 2018, the ability of the bots expanded to play together as a full team of 5, and they were able to defeat teams of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibit matches against expert players, however ended up losing both video games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, the reigning world champions of the game at the time, 2:0 in a live exhibit match in San Francisco. [163] [164] The bots' last public look came later on that month, where they played in 42,729 overall games in a four-day open online competitors, winning 99.4% of those video games. [165]
OpenAI 5's mechanisms in Dota 2's bot gamer shows the challenges of AI systems in multiplayer online battle arena (MOBA) video games and how OpenAI Five has actually demonstrated the usage of deep reinforcement knowing (DRL) representatives to attain superhuman skills in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl utilizes machine discovering to train a Shadow Hand, a human-like robotic hand, to control physical things. [167] It discovers entirely in simulation using the exact same RL algorithms and training code as OpenAI Five. OpenAI tackled the object orientation issue by utilizing domain randomization, a simulation approach which exposes the learner to a variety of experiences rather than attempting to fit to reality. The set-up for Dactyl, aside from having movement tracking video cameras, likewise has RGB video cameras to allow the robotic to manipulate an approximate object by seeing it. In 2018, OpenAI showed that the system was able to control a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl might resolve a Rubik's Cube. The robot was able to solve the puzzle 60% of the time. Objects like the Rubik's Cube introduce complicated physics that is harder to design. OpenAI did this by improving the effectiveness of Dactyl to perturbations by using Automatic Domain Randomization (ADR), a simulation approach of generating gradually more hard environments. ADR differs from manual domain randomization by not needing a human to specify randomization ranges. [169]
API

In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing new AI models established by OpenAI" to let developers contact it for "any English language AI job". [170] [171]
Text generation

The business has actually popularized generative pretrained transformers (GPT). [172]
OpenAI's initial GPT design ("GPT-1")

The initial paper on generative pre-training of a transformer-based language design was written by Alec Radford and his colleagues, and published in preprint on OpenAI's site on June 11, 2018. [173] It demonstrated how a generative design of language might obtain world knowledge and process long-range dependences by pre-training on a varied corpus with long stretches of adjoining text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is a without supervision transformer language design and the follower to OpenAI's original GPT design ("GPT-1"). GPT-2 was revealed in February 2019, with just restricted demonstrative variations initially launched to the public. The complete variation of GPT-2 was not right away launched due to issue about prospective misuse, including applications for composing fake news. [174] Some specialists expressed uncertainty that GPT-2 presented a significant hazard.

In action to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to detect "neural fake news". [175] Other scientists, such as Jeremy Howard, warned of "the innovation to absolutely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would hush all other speech and be difficult to filter". [176] In November 2019, OpenAI launched the total variation of the GPT-2 language design. [177] Several sites host interactive demonstrations of different instances of GPT-2 and other transformer designs. [178] [179] [180]
GPT-2's authors argue not being watched language models to be general-purpose students, shown by GPT-2 attaining advanced accuracy and perplexity on 7 of 8 zero-shot tasks (i.e. the design was not additional trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains somewhat 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It prevents certain concerns encoding vocabulary with word tokens by utilizing byte pair encoding. This permits representing any string of characters by encoding both individual characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is an unsupervised transformer language model and the follower to GPT-2. [182] [183] [184] OpenAI specified that the complete variation of GPT-3 contained 175 billion criteria, [184] 2 orders of magnitude bigger than the 1.5 billion [185] in the complete version of GPT-2 (although GPT-3 designs with as few as 125 million criteria were likewise trained). [186]
OpenAI stated that GPT-3 was successful at certain "meta-learning" jobs and might generalize the function of a single input-output pair. The GPT-3 release paper provided examples of translation and cross-linguistic transfer learning in between English and Romanian, hb9lc.org and between English and German. [184]
GPT-3 dramatically enhanced benchmark results over GPT-2. OpenAI warned that such scaling-up of language designs might be approaching or coming across the fundamental capability constraints of predictive language models. [187] Pre-training GPT-3 needed numerous thousand petaflop/s-days [b] of calculate, compared to 10s of petaflop/s-days for the full GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained design was not right away released to the public for concerns of possible abuse, although OpenAI planned to permit gain access to through a paid cloud API after a two-month free private beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was certified specifically to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has additionally been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in private beta. [194] According to OpenAI, the model can develop working code in over a lots shows languages, the majority of effectively in Python. [192]
Several concerns with glitches, style defects and security vulnerabilities were pointed out. [195] [196]
GitHub Copilot has actually been accused of releasing copyrighted code, without any author attribution or license. [197]
OpenAI announced that they would discontinue assistance for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI announced the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They revealed that the updated technology passed a simulated law school bar test with a score around the top 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 might likewise read, analyze or generate approximately 25,000 words of text, and compose code in all major programming languages. [200]
Observers reported that the iteration of ChatGPT using GPT-4 was an improvement on the previous GPT-3.5-based iteration, with the caveat that GPT-4 retained a few of the issues with earlier revisions. [201] GPT-4 is likewise capable of taking images as input on ChatGPT. [202] OpenAI has actually decreased to expose different technical details and data about GPT-4, such as the exact size of the model. [203]
GPT-4o

On May 13, ratemywifey.com 2024, OpenAI revealed and released GPT-4o, which can process and generate text, images and audio. [204] GPT-4o attained advanced lead to voice, multilingual, and vision benchmarks, setting new records in audio speech acknowledgment and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) benchmark compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller sized variation of GPT-4o changing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be especially helpful for business, start-ups and designers seeking to automate services with AI agents. [208]
o1

On September 12, 2024, OpenAI released the o1-preview and o1-mini designs, which have actually been designed to take more time to consider their reactions, resulting in greater accuracy. These designs are especially reliable in science, coding, and reasoning jobs, and were made available to ChatGPT Plus and Team members. [209] [210] In December 2024, o1-preview was replaced by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the follower of the o1 reasoning design. OpenAI also revealed o3-mini, a lighter and quicker version of OpenAI o3. As of December 21, 2024, this model is not available for public usage. According to OpenAI, they are checking o3 and o3-mini. [212] [213] Until January 10, 2025, safety and security researchers had the opportunity to obtain early access to these designs. [214] The design is called o3 instead of o2 to prevent confusion with telecoms services company O2. [215]
Deep research

Deep research is a representative established by OpenAI, revealed on February 2, 2025. It leverages the abilities of OpenAI's o3 model to perform comprehensive web surfing, data analysis, and synthesis, delivering detailed reports within a timeframe of 5 to thirty minutes. [216] With browsing and Python tools made it possible for, it reached a precision of 26.6 percent on HLE (Humanity's Last Exam) standard. [120]
Image category

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to evaluate the semantic resemblance in between text and images. It can notably be used for wiki.myamens.com image category. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer design that produces images from textual descriptions. [218] DALL-E utilizes a 12-billion-parameter version of GPT-3 to interpret natural language inputs (such as "a green leather purse formed like a pentagon" or "an isometric view of a sad capybara") and create matching images. It can produce images of realistic things ("a stained-glass window with a picture of a blue strawberry") in addition to items that do not exist in reality ("a cube with the texture of a porcupine"). Since March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI announced DALL-E 2, an upgraded version of the design with more sensible results. [219] In December 2022, OpenAI published on GitHub software application for Point-E, a new basic system for transforming a text description into a 3-dimensional design. [220]
DALL-E 3

In September 2023, OpenAI announced DALL-E 3, a more effective design much better able to generate images from intricate descriptions without manual timely engineering and render complicated details like hands and text. [221] It was released to the public as a ChatGPT Plus feature in October. [222]
Text-to-video

Sora

Sora is a text-to-video model that can create videos based on brief detailed prompts [223] in addition to extend existing videos forwards or in reverse in time. [224] It can create videos with resolution as much as 1920x1080 or 1080x1920. The optimum length of produced videos is unknown.

Sora's advancement group named it after the Japanese word for "sky", to symbolize its "limitless creative capacity". [223] Sora's technology is an adaptation of the innovation behind the DALL · E 3 text-to-image model. [225] OpenAI trained the system using publicly-available videos in addition to copyrighted videos accredited for that function, however did not reveal the number or the precise sources of the videos. [223]
OpenAI demonstrated some Sora-created high-definition videos to the general public on February 15, 2024, stating that it might generate videos approximately one minute long. It likewise shared a technical report highlighting the approaches used to train the design, and the model's abilities. [225] It acknowledged a few of its drawbacks, including struggles replicating complex physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "excellent", however noted that they need to have been cherry-picked and might not represent Sora's typical output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demo, significant entertainment-industry figures have shown considerable interest in the technology's capacity. In an interview, actor/filmmaker Tyler Perry revealed his astonishment at the technology's capability to produce realistic video from text descriptions, mentioning its prospective to change storytelling and material development. He said that his excitement about Sora's possibilities was so strong that he had chosen to stop briefly prepare for broadening his Atlanta-based movie studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech recognition model. [228] It is trained on a big dataset of diverse audio and is also a multi-task model that can carry out multilingual speech acknowledgment as well as speech translation and language recognition. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to forecast subsequent musical notes in MIDI music files. It can generate songs with 10 instruments in 15 designs. According to The Verge, a song created by MuseNet tends to start fairly however then fall into mayhem the longer it plays. [230] [231] In pop culture, initial applications of this tool were utilized as early as 2020 for the web mental thriller Ben Drowned to develop music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to produce music with vocals. After training on 1.2 million samples, the system accepts a genre, artist, and a bit of lyrics and outputs tune samples. OpenAI specified the songs "reveal local musical coherence [and] follow conventional chord patterns" however acknowledged that the songs do not have "familiar bigger musical structures such as choruses that duplicate" which "there is a substantial space" in between Jukebox and human-generated music. The Verge stated "It's highly impressive, even if the outcomes sound like mushy variations of tunes that may feel familiar", while Business Insider specified "remarkably, a few of the resulting songs are memorable and sound legitimate". [234] [235] [236]
User interfaces

Debate Game

In 2018, OpenAI released the Debate Game, which teaches makers to toy issues in front of a human judge. The purpose is to research whether such an approach might help in auditing AI decisions and in establishing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every substantial layer and nerve cell of 8 neural network designs which are typically studied in interpretability. [240] Microscope was developed to analyze the functions that form inside these neural networks easily. The designs included are AlexNet, VGG-19, various versions of Inception, archmageriseswiki.com and various versions of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is an artificial intelligence tool developed on top of GPT-3 that supplies a conversational interface that allows users to ask questions in natural language. The system then responds with an answer within seconds.

Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Reference: barbararainey/sportpassionhub#30