DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are excited to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion parameters to build, experiment, and properly scale your generative AI concepts on AWS.
In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled variations of the designs also.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that utilizes support learning to boost reasoning abilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. A crucial distinguishing function is its reinforcement learning (RL) step, which was used to fine-tune the model's reactions beyond the standard pre-training and fine-tuning process. By incorporating RL, DeepSeek-R1 can adjust better to user feedback and objectives, eventually boosting both importance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) method, implying it's equipped to break down complex inquiries and reason through them in a detailed way. This guided reasoning procedure permits the design to produce more precise, transparent, and detailed answers. This design integrates RL-based fine-tuning with CoT capabilities, aiming to generate structured actions while focusing on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has actually captured the market's attention as a flexible text-generation design that can be incorporated into various workflows such as representatives, rational thinking and data interpretation tasks.
DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture allows activation of 37 billion specifications, allowing effective reasoning by routing questions to the most appropriate specialist "clusters." This approach allows the model to focus on different issue domains while maintaining general effectiveness. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning abilities of the main R1 model to more efficient architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more effective models to imitate the behavior and reasoning patterns of the larger DeepSeek-R1 model, using it as a teacher model.
You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we advise deploying this design with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to introduce safeguards, avoid hazardous material, and evaluate designs against essential safety requirements. At the time of composing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create numerous guardrails tailored to various usage cases and use them to the DeepSeek-R1 model, improving user experiences and standardizing security controls across your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 design, you need access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To request a limitation boost, produce a limitation increase demand and connect to your account group.
Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) authorizations to use Amazon Bedrock Guardrails. For directions, see Set up consents to use guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails enables you to introduce safeguards, avoid harmful content, and assess designs against crucial safety requirements. You can carry out safety steps for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This enables you to use guardrails to examine user inputs and model actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The basic circulation involves the following steps: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After receiving the design's output, another guardrail check is used. If the output passes this last check, it's returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following areas demonstrate inference using this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:
1. On the Amazon Bedrock console, choose Model catalog under Foundation designs in the navigation pane.
At the time of writing this post, you can use the InvokeModel API to invoke the design. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a provider and pick the DeepSeek-R1 model.
The design detail page supplies vital details about the design's capabilities, prices structure, and implementation standards. You can discover detailed usage instructions, consisting of sample API calls and code snippets for integration. The design supports various text generation jobs, including material development, code generation, and concern answering, using its reinforcement discovering optimization and CoT thinking .
The page also includes deployment choices and licensing details to help you start with DeepSeek-R1 in your applications.
3. To begin utilizing DeepSeek-R1, select Deploy.
You will be prompted to set up the release details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters).
5. For Variety of circumstances, go into a number of instances (between 1-100).
6. For example type, select your instance type. For optimal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised.
Optionally, you can configure sophisticated security and facilities settings, consisting of virtual private cloud (VPC) networking, bytes-the-dust.com service role authorizations, and file encryption settings. For the majority of use cases, the default settings will work well. However, for production deployments, you may desire to review these settings to align with your company's security and compliance requirements.
7. Choose Deploy to begin utilizing the design.
When the implementation is complete, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock playground.
8. Choose Open in playground to access an interactive interface where you can experiment with different triggers and change model specifications like temperature level and maximum length.
When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimum outcomes. For instance, material for reasoning.
This is an excellent method to explore the design's reasoning and text generation abilities before incorporating it into your applications. The play ground offers instant feedback, assisting you comprehend how the model reacts to different inputs and letting you fine-tune your triggers for ideal outcomes.
You can rapidly test the design in the playground through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run inference utilizing guardrails with the released DeepSeek-R1 endpoint
The following code example demonstrates how to perform reasoning using a released DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have produced the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime customer, sets up inference criteria, and sends a request to create text based upon a user prompt.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML options that you can release with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your information, and release them into production utilizing either the UI or SDK.
Deploying DeepSeek-R1 design through SageMaker JumpStart offers two practical techniques: utilizing the intuitive SageMaker JumpStart UI or executing programmatically through the SageMaker Python SDK. Let's explore both approaches to help you choose the method that finest suits your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to release DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, pick Studio in the navigation pane.
2. First-time users will be triggered to create a domain.
3. On the SageMaker Studio console, select JumpStart in the navigation pane.
The design web browser shows available designs, with details like the provider name and model capabilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 design card.
Each design card reveals crucial details, including:
- Model name
- Provider name
- Task category (for instance, Text Generation).
Bedrock Ready badge (if appropriate), suggesting that this design can be signed up with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to invoke the design
5. Choose the model card to view the model details page.
The model details page includes the following details:
- The design name and supplier details. Deploy button to deploy the design. About and Notebooks tabs with detailed details
The About tab includes essential details, such as:
- Model description. - License details. - Technical specifications.
- Usage standards
Before you release the design, it's suggested to examine the model details and license terms to confirm compatibility with your usage case.
6. Choose Deploy to continue with implementation.
7. For Endpoint name, use the automatically created name or develop a custom-made one.
- For Instance type ¸ choose an instance type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, enter the number of instances (default: 1). Selecting suitable circumstances types and counts is crucial for cost and performance optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is optimized for sustained traffic and low latency.
- Review all setups for accuracy. For this design, we highly recommend adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
- Choose Deploy to deploy the model.
The implementation process can take numerous minutes to finish.
When deployment is total, your endpoint status will change to InService. At this point, the design is prepared to accept reasoning requests through the endpoint. You can monitor the deployment development on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the release is total, you can conjure up the design using a SageMaker runtime client and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To get going with DeepSeek-R1 using the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the required AWS authorizations and environment setup. The following is a detailed code example that shows how to deploy and use DeepSeek-R1 for reasoning programmatically. The code for deploying the model is provided in the Github here. You can clone the note pad and range from SageMaker Studio.
You can run additional demands against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and implement it as revealed in the following code:
Clean up
To prevent unwanted charges, complete the actions in this section to clean up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you released the design utilizing Amazon Bedrock Marketplace, total the following steps:
1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, pick Marketplace releases. - In the Managed deployments area, locate the endpoint you desire to delete.
- Select the endpoint, and on the Actions menu, pick Delete.
- Verify the endpoint details to make certain you're deleting the proper release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and release the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get begun. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting started with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business build ingenious solutions using AWS services and accelerated compute. Currently, he is focused on establishing methods for fine-tuning and enhancing the inference efficiency of large language models. In his free time, Vivek takes pleasure in treking, watching movies, and attempting various foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads product, engineering, and tactical collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about developing services that assist consumers accelerate their AI journey and unlock service value.