DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled variations varying from 1.5 to 70 billion criteria to construct, experiment, and properly scale your generative AI concepts on AWS.
In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled variations of the models as well.
Overview of DeepSeek-R1
DeepSeek-R1 is a large language design (LLM) established by DeepSeek AI that uses reinforcement learning to improve reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A crucial distinguishing function is its support learning (RL) step, which was used to refine the model's actions beyond the basic pre-training and fine-tuning procedure. By including RL, DeepSeek-R1 can adjust better to user feedback and goals, eventually improving both significance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) technique, meaning it's geared up to break down complex inquiries and reason through them in a detailed manner. This directed thinking procedure permits the design to produce more precise, transparent, and detailed responses. This design combines RL-based fine-tuning with CoT capabilities, aiming to create structured actions while concentrating on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has recorded the industry's attention as a flexible text-generation model that can be incorporated into various workflows such as representatives, logical thinking and information interpretation tasks.
DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture enables activation of 37 billion parameters, enabling efficient inference by routing inquiries to the most relevant professional "clusters." This method allows the design to concentrate on various issue domains while maintaining total performance. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge instance to deploy the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the reasoning abilities of the main R1 model to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more efficient models to simulate the habits and thinking patterns of the larger DeepSeek-R1 design, utilizing it as a teacher model.
You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend releasing this model with guardrails in place. In this blog site, we will utilize Amazon Bedrock Guardrails to introduce safeguards, prevent damaging content, and examine designs against crucial security criteria. At the time of writing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce numerous guardrails tailored to various usage cases and use them to the DeepSeek-R1 design, enhancing user experiences and standardizing security controls throughout your generative AI applications.
Prerequisites
To deploy the DeepSeek-R1 model, you need access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To ask for a limit boost, develop a limitation boost request and connect to your account team.
Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) permissions to utilize Amazon Bedrock Guardrails. For guidelines, see Establish consents to utilize guardrails for content filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails allows you to present safeguards, avoid damaging material, and assess designs against key security criteria. You can execute precaution for pediascape.science the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to assess user inputs and design reactions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The basic circulation involves the following actions: First, the system receives an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After getting the model's output, another guardrail check is used. If the output passes this final check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following areas demonstrate inference utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:
1. On the Amazon Bedrock console, choose Model catalog under Foundation designs in the navigation pane.
At the time of writing this post, you can use the InvokeModel API to conjure up the model. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a provider and pick the DeepSeek-R1 design.
The design detail page supplies necessary details about the model's abilities, rates structure, and implementation standards. You can find detailed use guidelines, including sample API calls and code bits for integration. The model supports various text generation tasks, including material production, code generation, and question answering, utilizing its reinforcement discovering optimization and CoT thinking capabilities.
The page also consists of implementation alternatives and licensing details to assist you begin with DeepSeek-R1 in your applications.
3. To begin using DeepSeek-R1, choose Deploy.
You will be prompted to configure the release details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters).
5. For Variety of circumstances, enter a variety of instances (between 1-100).
6. For Instance type, select your circumstances type. For optimum efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is suggested.
Optionally, you can configure sophisticated security and facilities settings, consisting of virtual private cloud (VPC) networking, service role consents, and encryption settings. For most utilize cases, the default settings will work well. However, for production releases, you might desire to review these settings to align with your company's security and compliance requirements.
7. Choose Deploy to start utilizing the design.
When the implementation is total, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground.
8. Choose Open in play ground to access an interactive interface where you can explore different triggers and adjust model parameters like temperature level and maximum length.
When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for optimum results. For instance, material for inference.
This is an outstanding method to explore the design's thinking and text generation abilities before integrating it into your applications. The play ground supplies immediate feedback, assisting you understand how the model responds to different inputs and letting you tweak your triggers for ideal outcomes.
You can rapidly evaluate the model in the play area through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint
The following code example shows how to perform inference utilizing a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have created the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime client, configures inference criteria, and sends out a demand to create text based on a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML options that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your information, and release them into production using either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart uses two practical techniques: using the user-friendly SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both methods to assist you choose the method that best suits your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to release DeepSeek-R1 utilizing SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be prompted to develop a domain.
3. On the SageMaker Studio console, select JumpStart in the navigation pane.
The model web browser displays available designs, with details like the service provider name and design abilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card.
Each design card reveals key details, including:
- Model name
- Provider name
- Task classification (for instance, Text Generation).
Bedrock Ready badge (if appropriate), suggesting that this design can be registered with Amazon Bedrock, enabling you to utilize Amazon Bedrock APIs to invoke the model
5. Choose the model card to see the model details page.
The design details page includes the following details:
- The model name and supplier details. Deploy button to release the design. About and Notebooks tabs with detailed details
The About tab includes crucial details, such as:
- Model description. - License details.
- Technical specifications.
- Usage standards
Before you deploy the design, it's suggested to evaluate the model details and license terms to confirm compatibility with your usage case.
6. Choose Deploy to continue with deployment.
7. For Endpoint name, use the instantly created name or develop a custom one.
- For example type ¸ select an instance type (default: ml.p5e.48 xlarge).
- For Initial instance count, get in the number of instances (default: 1). Selecting appropriate circumstances types and counts is vital for expense and efficiency optimization. Monitor your release to change these settings as needed.Under Inference type, Real-time reasoning is chosen by default. This is enhanced for sustained traffic and low latency.
- Review all setups for precision. For this model, we highly recommend adhering to SageMaker JumpStart default settings and making certain that network isolation remains in place.
- Choose Deploy to deploy the model.
The implementation procedure can take a number of minutes to complete.
When release is total, your endpoint status will alter to InService. At this moment, the design is prepared to accept inference requests through the endpoint. You can keep an eye on the release progress on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the implementation is total, you can invoke the model using a SageMaker runtime customer and integrate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To get going with DeepSeek-R1 using the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the essential AWS consents and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for inference programmatically. The code for deploying the model is provided in the Github here. You can clone the notebook and run from SageMaker Studio.
You can run additional demands against the predictor:
Implement guardrails and run inference with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:
Tidy up
To prevent undesirable charges, finish the steps in this area to tidy up your resources.
Delete the Amazon Bedrock Marketplace deployment
If you released the design using Amazon Bedrock Marketplace, total the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace releases. - In the Managed releases section, find the endpoint you desire to erase.
- Select the endpoint, and on the Actions menu, choose Delete.
- Verify the endpoint details to make certain you're erasing the correct release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we explored how you can access and release the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business build ingenious services utilizing AWS services and accelerated compute. Currently, he is focused on establishing methods for fine-tuning and enhancing the inference performance of big language models. In his totally free time, Vivek takes pleasure in treking, viewing films, and attempting various foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.
Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about constructing options that assist clients accelerate their AI journey and unlock business worth.