Artificial General Intelligence
Artificial general intelligence (AGI) is a kind of artificial intelligence (AI) that matches or goes beyond human cognitive capabilities across a large range of cognitive tasks. This contrasts with narrow AI, which is restricted to particular tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that significantly goes beyond human cognitive capabilities. AGI is thought about one of the definitions of strong AI.
Creating AGI is a main objective of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 survey recognized 72 active AGI research study and development jobs across 37 countries. [4]
The timeline for attaining AGI stays a subject of ongoing debate amongst researchers and specialists. As of 2023, some argue that it may be possible in years or decades; others preserve it might take a century or longer; a minority think it may never ever be attained; and another minority declares that it is already here. [5] [6] Notable AI scientist Geoffrey Hinton has expressed issues about the quick progress towards AGI, suggesting it could be achieved faster than lots of expect. [7]
There is dispute on the exact meaning of AGI and concerning whether contemporary big language designs (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a typical subject in sci-fi and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many experts on AI have actually specified that reducing the threat of human termination posed by AGI ought to be an international top priority. [14] [15] Others discover the advancement of AGI to be too remote to present such a danger. [16] [17]
Terminology
AGI is also called strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level smart AI, or basic smart action. [21]
Some scholastic sources book the term "strong AI" for computer system programs that experience sentience or consciousness. [a] In contrast, weak AI (or narrow AI) has the ability to fix one specific issue but does not have basic cognitive capabilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the exact same sense as human beings. [a]
Related ideas consist of artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical type of AGI that is far more usually smart than people, [23] while the concept of transformative AI relates to AI having a large influence on society, for instance, comparable to the agricultural or industrial revolution. [24]
A framework for categorizing AGI in levels was in 2023 by Google DeepMind scientists. They define 5 levels of AGI: emerging, proficient, expert, virtuoso, and superhuman. For example, a skilled AGI is specified as an AI that outshines 50% of proficient grownups in a vast array of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise specified however with a threshold of 100%. They consider big language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have been proposed. Among the leading propositions is the Turing test. However, there are other widely known meanings, and some researchers disagree with the more popular approaches. [b]
Intelligence characteristics
Researchers normally hold that intelligence is required to do all of the following: [27]
reason, use technique, solve puzzles, and make judgments under unpredictability
represent knowledge, consisting of good sense understanding
strategy
learn
- communicate in natural language
- if essential, incorporate these abilities in conclusion of any offered objective
Many interdisciplinary methods (e.g. cognitive science, wiki.insidertoday.org computational intelligence, and decision making) consider additional qualities such as imagination (the capability to form novel psychological images and ideas) [28] and autonomy. [29]
Computer-based systems that show much of these capabilities exist (e.g. see computational imagination, automated reasoning, decision support group, robotic, evolutionary calculation, intelligent agent). There is argument about whether contemporary AI systems possess them to an appropriate degree.
Physical qualities
Other abilities are considered desirable in intelligent systems, wiki.whenparked.com as they might impact intelligence or aid in its expression. These consist of: [30]
- the ability to sense (e.g. see, hear, etc), and - the ability to act (e.g. move and manipulate objects, change place to explore, and so on).
This consists of the ability to identify and respond to hazard. [31]
Although the capability to sense (e.g. see, hear, etc) and the ability to act (e.g. move and manipulate objects, modification area to explore, etc) can be desirable for some intelligent systems, [30] these physical abilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that large language designs (LLMs) may currently be or end up being AGI. Even from a less optimistic perspective on LLMs, there is no firm requirement for an AGI to have a human-like form; being a silicon-based computational system is adequate, supplied it can process input (language) from the external world in place of human senses. This interpretation aligns with the understanding that AGI has actually never ever been proscribed a particular physical personification and thus does not require a capacity for mobility or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests meant to confirm human-level AGI have been considered, including: [33] [34]
The idea of the test is that the machine needs to try and pretend to be a male, by addressing concerns put to it, and it will just pass if the pretence is fairly convincing. A significant part of a jury, who need to not be expert about devices, need to be taken in by the pretence. [37]
AI-complete issues
An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to solve it, one would require to carry out AGI, since the service is beyond the capabilities of a purpose-specific algorithm. [47]
There are lots of issues that have actually been conjectured to need general intelligence to solve in addition to people. Examples include computer vision, natural language understanding, and dealing with unanticipated scenarios while resolving any real-world problem. [48] Even a particular task like translation requires a maker to read and compose in both languages, follow the author's argument (reason), understand the context (understanding), and faithfully reproduce the author's original intent (social intelligence). All of these problems require to be fixed all at once in order to reach human-level maker efficiency.
However, much of these tasks can now be performed by modern large language models. According to Stanford University's 2024 AI index, AI has reached human-level performance on lots of standards for reading comprehension and visual reasoning. [49]
History
Classical AI
Modern AI research study started in the mid-1950s. [50] The first generation of AI researchers were convinced that artificial general intelligence was possible and that it would exist in simply a couple of years. [51] AI leader Herbert A. Simon composed in 1965: "makers will be capable, within twenty years, of doing any work a male can do." [52]
Their forecasts were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers believed they could develop by the year 2001. AI leader Marvin Minsky was an expert [53] on the project of making HAL 9000 as reasonable as possible according to the consensus forecasts of the time. He stated in 1967, "Within a generation ... the issue of creating 'expert system' will significantly be resolved". [54]
Several classical AI tasks, such as Doug Lenat's Cyc task (that started in 1984), and Allen Newell's Soar job, were directed at AGI.
However, in the early 1970s, it ended up being apparent that researchers had grossly ignored the problem of the job. Funding firms ended up being skeptical of AGI and put researchers under increasing pressure to produce beneficial "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI goals like "continue a casual discussion". [58] In response to this and the success of professional systems, both market and federal government pumped money into the field. [56] [59] However, confidence in AI stunningly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the second time in 20 years, AI researchers who forecasted the imminent achievement of AGI had actually been misinterpreted. By the 1990s, AI scientists had a credibility for making vain guarantees. They ended up being reluctant to make forecasts at all [d] and avoided reference of "human level" expert system for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI attained industrial success and scholastic respectability by concentrating on specific sub-problems where AI can produce proven results and commercial applications, such as speech acknowledgment and recommendation algorithms. [63] These "applied AI" systems are now utilized extensively throughout the technology market, and research in this vein is greatly funded in both academic community and industry. As of 2018 [upgrade], development in this field was thought about an emerging trend, and a fully grown stage was anticipated to be reached in more than ten years. [64]
At the millenium, many traditional AI researchers [65] hoped that strong AI could be established by integrating programs that solve various sub-problems. Hans Moravec wrote in 1988:
I am confident that this bottom-up path to expert system will one day fulfill the standard top-down route more than half way, ready to provide the real-world proficiency and the commonsense understanding that has been so frustratingly elusive in thinking programs. Fully intelligent makers will result when the metaphorical golden spike is driven uniting the 2 efforts. [65]
However, even at the time, this was contested. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by specifying:
The expectation has frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way satisfy "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is really just one feasible path from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we should even try to reach such a level, since it appears arriving would just amount to uprooting our signs from their intrinsic meanings (consequently merely decreasing ourselves to the practical equivalent of a programmable computer system). [66]
Modern synthetic basic intelligence research study
The term "artificial basic intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a discussion of the implications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent maximises "the capability to satisfy objectives in a large range of environments". [68] This type of AGI, characterized by the ability to increase a mathematical definition of intelligence instead of show human-like behaviour, [69] was likewise called universal expert system. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The very first summer school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was provided in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, organized by Lex Fridman and including a number of guest speakers.
As of 2023 [upgrade], a small number of computer scientists are active in AGI research study, and numerous add to a series of AGI conferences. However, progressively more scientists are interested in open-ended knowing, [76] [77] which is the concept of enabling AI to constantly discover and innovate like human beings do.
Feasibility
As of 2023, the development and potential accomplishment of AGI stays a topic of extreme debate within the AI community. While conventional agreement held that AGI was a distant goal, current improvements have led some scientists and market figures to declare that early types of AGI might already exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "machines will be capable, within twenty years, of doing any work a guy can do". This forecast failed to come real. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century because it would need "unforeseeable and fundamentally unforeseeable advancements" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between modern-day computing and human-level expert system is as large as the gulf between present area flight and practical faster-than-light spaceflight. [80]
An additional obstacle is the absence of clarity in specifying what intelligence requires. Does it need awareness? Must it show the ability to set goals as well as pursue them? Is it simply a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are centers such as preparation, reasoning, and causal understanding needed? Does intelligence require clearly replicating the brain and its particular faculties? Does it require emotions? [81]
Most AI researchers think strong AI can be accomplished in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of attaining strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be achieved, but that the present level of development is such that a date can not accurately be anticipated. [84] AI experts' views on the feasibility of AGI wax and wane. Four surveys performed in 2012 and 2013 recommended that the mean quote among experts for when they would be 50% positive AGI would show up was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the specialists, 16.5% addressed with "never" when asked the same concern however with a 90% confidence rather. [85] [86] Further current AGI progress factors to consider can be found above Tests for validating human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year time frame there is a strong bias towards forecasting the arrival of human-level AI as between 15 and 25 years from the time the forecast was made". They evaluated 95 forecasts made in between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft scientists released a comprehensive evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it could reasonably be considered as an early (yet still incomplete) variation of a synthetic general intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outperforms 99% of people on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a significant level of general intelligence has actually already been attained with frontier designs. They composed that unwillingness to this view originates from 4 main reasons: a "healthy uncertainty about metrics for AGI", an "ideological dedication to alternative AI theories or strategies", a "commitment to human (or biological) exceptionalism", or a "issue about the economic ramifications of AGI". [91]
2023 likewise marked the development of large multimodal designs (big language models capable of processing or producing multiple methods such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the first of a series of designs that "invest more time thinking before they react". According to Mira Murati, this ability to think before reacting represents a new, extra paradigm. It enhances design outputs by investing more computing power when producing the response, whereas the design scaling paradigm improves outputs by increasing the design size, training data and training calculate power. [93] [94]
An OpenAI employee, Vahid Kazemi, declared in 2024 that the company had actually achieved AGI, stating, "In my opinion, we have actually already attained AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "much better than most people at a lot of tasks." He likewise attended to criticisms that large language designs (LLMs) simply follow predefined patterns, comparing their knowing process to the clinical approach of observing, assuming, and verifying. These declarations have actually stimulated debate, as they rely on a broad and unconventional definition of AGI-traditionally understood as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models show impressive flexibility, they might not fully fulfill this standard. Notably, Kazemi's comments came quickly after OpenAI removed "AGI" from the regards to its collaboration with Microsoft, prompting speculation about the business's strategic intentions. [95]
Timescales
Progress in synthetic intelligence has traditionally gone through durations of rapid development separated by periods when progress appeared to stop. [82] Ending each hiatus were essential advances in hardware, software or both to create area for additional development. [82] [98] [99] For example, the hardware available in the twentieth century was not enough to execute deep learning, which requires great deals of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel says that estimates of the time needed before a really flexible AGI is constructed vary from ten years to over a century. Since 2007 [upgrade], the agreement in the AGI research study community seemed to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI researchers have actually provided a broad variety of opinions on whether development will be this fast. A 2012 meta-analysis of 95 such opinions discovered a predisposition towards forecasting that the onset of AGI would happen within 16-26 years for contemporary and historical forecasts alike. That paper has been criticized for how it categorized viewpoints as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, substantially better than the second-best entry's rate of 26.3% (the standard technique utilized a weighted amount of ratings from various pre-defined classifiers). [105] AlexNet was considered the preliminary ground-breaker of the current deep learning wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on publicly readily available and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds approximately to a six-year-old kid in first grade. A grownup concerns about 100 typically. Similar tests were brought out in 2014, with the IQ rating reaching a maximum worth of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language design efficient in carrying out lots of varied jobs without specific training. According to Gary Grossman in a VentureBeat post, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the very same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested for modifications to the chatbot to comply with their security guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system efficient in performing more than 600 various jobs. [110]
In 2023, Microsoft Research released a research study on an early version of OpenAI's GPT-4, competing that it exhibited more basic intelligence than previous AI models and demonstrated human-level performance in tasks covering multiple domains, such as mathematics, coding, and law. This research stimulated a debate on whether GPT-4 might be considered an early, incomplete variation of artificial general intelligence, stressing the requirement for additional expedition and evaluation of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton stated that: [112]
The concept that this stuff could really get smarter than people - a few people thought that, [...] But many people thought it was method off. And I thought it was method off. I thought it was 30 to 50 years or even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis similarly said that "The progress in the last couple of years has actually been quite amazing", and that he sees no reason it would decrease, expecting AGI within a years or perhaps a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within 5 years, AI would be capable of passing any test a minimum of along with humans. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a former OpenAI employee, estimated AGI by 2027 to be "strikingly possible". [115]
Whole brain emulation
While the advancement of transformer models like in ChatGPT is considered the most promising course to AGI, [116] [117] entire brain emulation can function as an alternative approach. With whole brain simulation, a brain model is constructed by scanning and mapping a biological brain in information, and after that copying and mimicing it on a computer system or another computational gadget. The simulation model should be adequately faithful to the original, so that it acts in practically the very same method as the original brain. [118] Whole brain emulation is a kind of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research purposes. It has been talked about in synthetic intelligence research [103] as an approach to strong AI. Neuroimaging technologies that might deliver the essential in-depth understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of sufficient quality will appear on a comparable timescale to the computing power required to emulate it.
Early estimates
For low-level brain simulation, an extremely powerful cluster of computers or GPUs would be needed, provided the huge amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on typical 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number declines with age, stabilizing by their adult years. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based upon a simple switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at numerous estimates for the hardware needed to equate to the human brain and embraced a figure of 1016 computations per 2nd (cps). [e] (For comparison, if a "computation" was comparable to one "floating-point operation" - a step used to rate current supercomputers - then 1016 "calculations" would be equivalent to 10 petaFLOPS, achieved in 2011, while 1018 was attained in 2022.) He utilized this figure to anticipate the essential hardware would be available sometime between 2015 and 2025, if the rapid development in computer power at the time of composing continued.
Current research
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually established a particularly in-depth and publicly accessible atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based methods
The synthetic nerve cell model presumed by Kurzweil and utilized in many existing artificial neural network executions is easy compared with biological nerve cells. A brain simulation would likely have to catch the comprehensive cellular behaviour of biological neurons, presently comprehended only in broad summary. The overhead presented by full modeling of the biological, chemical, and physical details of neural behaviour (specifically on a molecular scale) would need computational powers numerous orders of magnitude larger than Kurzweil's quote. In addition, the estimates do not represent glial cells, which are understood to play a function in cognitive procedures. [125]
A basic criticism of the simulated brain approach derives from embodied cognition theory which asserts that human personification is a necessary element of human intelligence and is essential to ground meaning. [126] [127] If this theory is appropriate, any fully functional brain model will require to incorporate more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an option, however it is unknown whether this would be enough.
Philosophical viewpoint
"Strong AI" as defined in viewpoint
In 1980, thinker John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference between 2 hypotheses about synthetic intelligence: [f]
Strong AI hypothesis: An artificial intelligence system can have "a mind" and "awareness". Weak AI hypothesis: An expert system system can (only) imitate it believes and has a mind and consciousness.
The first one he called "strong" because it makes a more powerful statement: it assumes something special has taken place to the machine that goes beyond those capabilities that we can check. The behaviour of a "weak AI" device would be precisely similar to a "strong AI" machine, however the latter would also have subjective mindful experience. This use is also typical in scholastic AI research study and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil use the term "strong AI" to suggest "human level artificial basic intelligence". [102] This is not the like Searle's strong AI, unless it is presumed that awareness is required for human-level AGI. Academic philosophers such as Searle do not think that holds true, and to most synthetic intelligence scientists the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no need to know if it in fact has mind - certainly, there would be no way to tell. For AI research, Searle's "weak AI hypothesis" is equivalent to the statement "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for given, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are 2 various things.
Consciousness
Consciousness can have various meanings, and some elements play considerable roles in science fiction and the ethics of expert system:
Sentience (or "incredible awareness"): The capability to "feel" understandings or emotions subjectively, as opposed to the ability to reason about understandings. Some philosophers, such as David Chalmers, use the term "consciousness" to refer exclusively to extraordinary consciousness, which is approximately equivalent to sentience. [132] Determining why and how subjective experience develops is known as the hard problem of consciousness. [133] Thomas Nagel explained in 1974 that it "seems like" something to be conscious. If we are not mindful, then it doesn't feel like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer declared that the company's AI chatbot, LaMDA, had actually achieved sentience, though this claim was widely contested by other experts. [135]
Self-awareness: To have conscious awareness of oneself as a different person, especially to be purposely knowledgeable about one's own thoughts. This is opposed to merely being the "topic of one's thought"-an operating system or debugger has the ability to be "knowledgeable about itself" (that is, to represent itself in the exact same way it represents whatever else)-but this is not what individuals generally suggest when they use the term "self-awareness". [g]
These traits have an ethical dimension. AI sentience would generate concerns of well-being and legal protection, similarly to animals. [136] Other aspects of consciousness related to cognitive abilities are also appropriate to the idea of AI rights. [137] Figuring out how to incorporate sophisticated AI with existing legal and social frameworks is an emergent problem. [138]
Benefits
AGI could have a wide range of applications. If oriented towards such objectives, AGI could help alleviate different issues worldwide such as hunger, hardship and health issues. [139]
AGI could improve efficiency and performance in many tasks. For instance, in public health, AGI might accelerate medical research, notably versus cancer. [140] It might look after the elderly, [141] and equalize access to fast, top quality medical diagnostics. It might provide enjoyable, inexpensive and personalized education. [141] The need to work to subsist might end up being outdated if the wealth produced is properly redistributed. [141] [142] This also raises the concern of the place of humans in a radically automated society.
AGI could likewise help to make rational choices, and to anticipate and prevent catastrophes. It might likewise assist to profit of potentially disastrous technologies such as nanotechnology or environment engineering, while preventing the associated risks. [143] If an AGI's main objective is to prevent existential catastrophes such as human termination (which could be challenging if the Vulnerable World Hypothesis ends up being real), [144] it might take measures to significantly minimize the risks [143] while lessening the effect of these procedures on our quality of life.
Risks
Existential risks
AGI might represent several kinds of existential threat, which are dangers that threaten "the premature extinction of Earth-originating intelligent life or the irreversible and extreme destruction of its potential for preferable future development". [145] The danger of human extinction from AGI has been the topic of numerous disputes, however there is also the possibility that the development of AGI would lead to a completely flawed future. Notably, it might be used to spread out and protect the set of worths of whoever develops it. If mankind still has ethical blind areas comparable to slavery in the past, AGI may irreversibly entrench it, preventing moral development. [146] Furthermore, AGI could help with mass security and indoctrination, which might be utilized to produce a stable repressive around the world totalitarian regime. [147] [148] There is also a danger for the machines themselves. If machines that are sentient or otherwise worthwhile of moral consideration are mass developed in the future, participating in a civilizational path that indefinitely neglects their well-being and interests might be an existential disaster. [149] [150] Considering just how much AGI might enhance mankind's future and help in reducing other existential dangers, Toby Ord calls these existential risks "an argument for proceeding with due caution", not for "abandoning AI". [147]
Risk of loss of control and human extinction
The thesis that AI poses an existential danger for people, and that this danger needs more attention, is questionable but has actually been backed in 2023 by lots of public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized widespread indifference:
So, facing possible futures of incalculable benefits and threats, the specialists are definitely doing everything possible to make sure the best outcome, right? Wrong. If a superior alien civilisation sent us a message stating, 'We'll show up in a couple of decades,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is happening with AI. [153]
The possible fate of mankind has actually in some cases been compared to the fate of gorillas threatened by human activities. The contrast specifies that greater intelligence allowed mankind to control gorillas, which are now vulnerable in manner ins which they could not have actually expected. As an outcome, the gorilla has become a threatened types, not out of malice, but just as a security damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate mankind which we must take care not to anthropomorphize them and interpret their intents as we would for human beings. He said that individuals won't be "clever sufficient to develop super-intelligent makers, yet ridiculously foolish to the point of providing it moronic goals with no safeguards". [155] On the other side, the idea of important convergence recommends that practically whatever their goals, smart representatives will have factors to try to endure and obtain more power as intermediary steps to accomplishing these objectives. Which this does not need having feelings. [156]
Many scholars who are concerned about existential danger advocate for more research study into resolving the "control issue" to answer the question: what types of safeguards, algorithms, or architectures can developers implement to maximise the likelihood that their recursively-improving AI would continue to act in a friendly, rather than destructive, way after it reaches superintelligence? [157] [158] Solving the control problem is made complex by the AI arms race (which might cause a race to the bottom of security precautions in order to release products before rivals), [159] and the use of AI in weapon systems. [160]
The thesis that AI can position existential danger also has critics. Skeptics typically say that AGI is unlikely in the short-term, or that issues about AGI sidetrack from other problems associated with current AI. [161] Former Google fraud czar Shuman Ghosemajumder thinks about that for lots of people outside of the innovation industry, existing chatbots and LLMs are currently perceived as though they were AGI, leading to additional misunderstanding and fear. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence replacing an unreasonable belief in an omnipotent God. [163] Some scientists believe that the communication projects on AI existential threat by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulatory capture and to inflate interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other market leaders and scientists, issued a joint statement asserting that "Mitigating the danger of termination from AI need to be an international concern along with other societal-scale threats such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI estimated that "80% of the U.S. workforce might have at least 10% of their work tasks affected by the intro of LLMs, while around 19% of employees might see at least 50% of their tasks affected". [166] [167] They think about office workers to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI could have a much better autonomy, ability to make choices, to user interface with other computer system tools, however also to manage robotized bodies.
According to Stephen Hawking, the result of automation on the quality of life will depend on how the wealth will be rearranged: [142]
Everyone can take pleasure in a life of luxurious leisure if the machine-produced wealth is shared, or many people can wind up badly bad if the machine-owners effectively lobby against wealth redistribution. So far, the trend seems to be toward the 2nd option, with technology driving ever-increasing inequality
Elon Musk considers that the automation of society will require governments to embrace a universal standard earnings. [168]
See likewise
Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain AI effect AI safety - Research area on making AI safe and beneficial AI alignment - AI conformance to the desired goal A.I. Rising - 2018 film directed by Lazar Bodroža Artificial intelligence Automated machine knowing - Process of automating the application of maker learning BRAIN Initiative - Collaborative public-private research study effort revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General game playing - Ability of artificial intelligence to play different video games Generative synthetic intelligence - AI system capable of creating content in action to triggers Human Brain Project - Scientific research project Intelligence amplification - Use of info technology to enhance human intelligence (IA). Machine principles - Moral behaviours of man-made makers. Moravec's paradox. Multi-task knowing - Solving several maker finding out tasks at the exact same time. Neural scaling law - Statistical law in machine learning. Outline of artificial intelligence - Overview of and topical guide to artificial intelligence. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or form of expert system. Transfer knowing - Machine knowing strategy. Loebner Prize - Annual AI competition. Hardware for artificial intelligence - Hardware specially designed and optimized for expert system. Weak synthetic intelligence - Form of artificial intelligence.
Notes
^ a b See below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the short article Chinese space. ^ AI creator John McCarthy composes: "we can not yet characterize in basic what type of computational treatments we wish to call intelligent. " [26] (For a discussion of some definitions of intelligence used by artificial intelligence scientists, see viewpoint of artificial intelligence.). ^ The Lighthill report particularly criticized AI's "grandiose objectives" and led the taking apart of AI research study in England. [55] In the U.S., DARPA became identified to fund only "mission-oriented direct research, rather than basic undirected research". [56] [57] ^ As AI founder John McCarthy writes "it would be a fantastic relief to the rest of the workers in AI if the developers of new basic formalisms would express their hopes in a more guarded form than has sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is used. More recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As defined in a standard AI book: "The assertion that machines might potentially act smartly (or, maybe better, act as if they were smart) is called the 'weak AI' hypothesis by thinkers, and the assertion that devices that do so are actually thinking (instead of mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to carry out a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to guarantee that artificial basic intelligence benefits all of humankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is creating artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were recognized as being active in 2020. ^ a b c "AI timelines: What do specialists in artificial intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton stops Google and alerts of risk ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can avoid the bad stars from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows sparks of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The real danger is not AI itself but the way we deploy it. ^ "Impressed by synthetic intelligence? Experts say AGI is coming next, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could present existential threats to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last creation that humankind needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the risk of extinction from AI need to be an international concern. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists caution of danger of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from creating devices that can outthink us in general methods. ^ LeCun, Yann (June 2023). "AGI does not provide an existential risk". Medium. There is no factor to fear AI as an existential danger. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as "device intelligence with the complete series of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is transforming our world - it is on everyone to ensure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of smart characteristics is based upon the subjects covered by major AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the way we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reevaluated: The idea of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reassessed: The idea of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists dispute whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar test to AP Biology. Here's a list of tough examinations both AI versions have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended evaluating an AI chatbot's capability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software engineers avoided the term synthetic intelligence for worry of being deemed wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of maker intelligence: Despite development in maker intelligence, synthetic general intelligence is still a major obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not turn into a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us paradise or destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A survey of expert opinion. In Fundamental concerns of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: parentingliteracy.com State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as smart as Siri - but a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're getting in the AI golden zone between narrow and general AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are already seeing an early example of an AGI system in the just recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is debatable, however the agreement is that it is not AGI. ... If absolutely nothing else, GPT-3 informs us there is a middle ground between narrow and general AI. ^ Quach, Katyanna. "A designer developed an AI chatbot using GPT-3 that assisted a guy speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can carry out over 600 jobs, from playing games to controlling robots", TechCrunch, archived from the original on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could measure up to human intelligence in 'just a few years,' says CEO of Google's main A.I. research study lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI might pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone appears to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A large range of views in present research study, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How submitting our minds to a computer might become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced estimate in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (estimated in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable artificial intelligence for curiosity by the field about why a program behaves the way it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost outweigh benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Benefit from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, threats, methods (Reprinted with corrections 2017 ed.). Oxford, UK; New York City, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that humans will destroy ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security threat' to Australia, Senate questions says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the implications of synthetic intelligence - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The fascinating Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The remarkable Facebook dispute in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to catastrophic AGI risk: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report cautions". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over danger posed but synthetic intelligence can not be overlooked". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring worries over AI, alert scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator says huge tech is lying about AI termination danger". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early look at the labor market effect potential of large language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of workers could see their tasks affected by AI. These are the tasks most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we need universal standard earnings since 'in the future, manual labor will be an option'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic basic intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, recovered 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Point of view, archived from the original on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The ultimate effort is to make computer programs that can solve issues and attain objectives in the world as well as humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer system hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, retrieved 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, recovered 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Expert System", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, obtained 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York City: Oxford University Press, archived from the original on 25 July 2009, recovered 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, obtained 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, obtained 4 September 2013 - through ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, obtained 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what might be called "Dyson's Law") that "Any system easy enough to be easy to understand will not be made complex enough to act intelligently, while any system complicated enough to behave wisely will be too made complex to comprehend." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead basic dumb. They work, however they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from devices. For biological creatures, reason and function originate from acting in the world and experiencing the repercussions. Artificial intelligences - disembodied, strangers to blood, sweat, and tears - have no event for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically expect that those who hope to get abundant from AI are going to have the interests of the rest people close at heart,' ... composes [Gary Marcus] 'We can't count on governments driven by campaign financing contributions [from tech business] to press back.' ... Marcus information the demands that citizens should make from their governments and the tech companies. They consist of transparency on how AI systems work; settlement for individuals if their data [are] used to train LLMs (big language design) s and the right to approval to this usage; and the ability to hold tech companies liable for the harms they bring on by eliminating Section 230, enforcing cash penalites, and passing more stringent item liability laws ... Marcus also recommends ... that a new, AI-specific federal agency, akin to the FDA, the FCC, or the FTC, may supply the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... recommends ... develop [ing] an expert licensing routine for engineers that would operate in a comparable method to medical licenses, malpractice matches, and the Hippocratic oath in medication. 'What if, like medical professionals,' she asks ..., 'AI engineers also promised to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in synthetic intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has baffled humans for decades, reveals the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competitors has actually exposed that although NLP (natural-language processing) models are capable of unbelievable tasks, their abilities are quite restricted by the quantity of context they get. This [...] could trigger [problems] for scientists who want to use them to do things such as evaluate ancient languages. In some cases, there are few historic records on long-gone civilizations to serve as training data for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to generate phony videos identical from real ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we imply sensible videos produced utilizing expert system that in fact deceive individuals, then they hardly exist. The phonies aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in general, operating in our media as counterfeited evidence. Their function better resembles that of animations, wiki.rrtn.org particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We must avoid humanizing machine-learning models used in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of synthetic basic intelligence are stymmied by the same old problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, provided and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead authorities to neglect inconsistent evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test but showed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at tasks that need genuine humanlike reasoning or an understanding of the physical and social world ... ChatGPT seemed not able to factor realistically and tried to rely on its huge database of ... facts stemmed from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are effective however unreliable. Rules-based systems can not deal with scenarios their developers did not expect. Learning systems are restricted by the data on which they were trained. AI failures have currently led to tragedy. Advanced auto-pilot features in vehicles, although they carry out well in some situations, have actually driven cars and trucks without cautioning into trucks, concrete barriers, and parked cars. In the incorrect situation, AI systems go from supersmart to superdumb in an immediate. When an opponent is attempting to manipulate and hack an AI system, the dangers are even higher." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: bahnreise-wiki.de James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new innovations however depend on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.